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Abstract: Plasmonic directional couplers based on channel waveguides embedded in random 
arrays of metal nanoparticles (NPs) operating in near-infrared are fabricated using electron-
beam lithography and investigated experimentally characterizing their performance with 
leakage-radiation microscopy. The power exchange between coupled waveguides, its spatial 
period and efficiency, along with the overall power transmission, are determined in the 
wavelength range from 700 to 800 nm. We introduce a simple coupled-mode approach based 
on three coupled waveguides. The composite system considers a waveguide consisting of NP-
filled stripe with characteristics distinctly different from those of the channel waveguides. 
Using this model, we describe the performance of investigated composite plasmonic 
configurations and obtain good qualitative agreement with experimental observations. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

Plasmon-based photonic, or simply plasmonic devices represent, in general, nano-optical 
components that are designed to generate and detect, guide and control surface plasmon-
polariton (SPP) modes. The intrinsic characteristic of SPP modes to be confined in 
subwavelength volumes persists to be one of the main motivations for their study [1]. A 
substantial amount of plasmonic devices, with many diverse functions and geometries, have 
been proposed, designed, and characterized in the past decade. Dielectric-loaded waveguides 
[2,3], channel and slot waveguides [4,5], nano-lenses [6,7], antennas [8,9], and plasmonic 
metamaterial components [10], are just a few examples of a long list of recently developed 
plasmonic devices with different purposes, which include multiplexing [11], beam splitting 
[12], filtering [13], nano-focusing [7], and directional coupling [14], among others. 

Optical directional couplers (ODCs) consist of two or more closely-located optical 
waveguides, whose modes can couple evanescently and thereby exchange their powers, 
realizing, under certain conditions, complete power transfer between waveguides [15]. In 
general, ODCs with weakly-coupled waveguides can equivalently be viewed as independent 
waveguides with mode power exchange due to their coupling or as a single composite 
(multimode) waveguide structure, in which the power distribution across the structure varies 
with the propagation due to the mode interference [15,16]. Plasmonic directional couplers 
(PDCs) have also been explored in several configurations based on different coupling 
schemes and functions. Efficient power transfer and switching has been demonstrated in 
PDCs based on long-range plasmonic waveguides at telecom wavelengths [17–20], hybrid 
waveguide systems [21], slot metal-insulator-metal waveguides [22], and dielectric-loaded 
waveguides [23]. 
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In this work, we consider a completely new alternative for the PDC design, which is based 
on two channel waveguides embedded in random arrays of metal nanoparticles (NPs) 
separated by a stripe filled also with NPs. The proof of concept for this type of waveguides 
was investigated in the previous work with straight waveguides, bends and splitters being 
designed and experimentally characterized [24]. The fundamental idea behind such structures 
is that the NP-free channels support plasmonic guided modes, while the SPP propagation 
through random and strongly interacting NPs is prohibited due to the SPP elastic multiple 
scattering resulting in the SPP localization [25–28]. In a recent study, the effect of multiple 
scattering of SPPs produced by random arrays of NPs has demonstrated to be able to 
maximize the deliverable number of input-to-output plasmonic channels for improved 
performance in optoelectronic devices by exploiting the decorrelation of SPP modes [29]. In 
the configuration presented here, the occurrence of coupling between two NP-free channels 
implies SPP transmission through the stripe of randomly positioned NPs. Surprisingly, the 
interpretation of experimental observations led us to assume that the NP stripe acts as a third 
waveguide that mediates the coupling between SPP modes supported by NP-free channels. 
Using a simple coupled-mode approach based on three coupled waveguides, we describe the 
performance of investigated composite plasmonic configurations obtaining good qualitative 
agreement with the experimental observations. 

2. Materials and methods 

The structures were fabricated using standard electron-beam lithography (EBL) and lift-off 
patterning. First, a 70-nm-thick gold film was deposited on top of a 0.17-mm-thick silica 
substrate. The lithographic mask consisted of a thin film of polymethyl-methacrylate 
(PMMA) spin-coated over the gold film, which acted as a positive resist. Then, the sample 
was patterned using the EBL process for subsequent development. A second evaporation 
process was performed to fabricate the cylindrical gold NPs, to finally remove the mask, and 
thus completing the lift-off process. 

 

Fig. 1. (a) Schematic design of the plasmonic directional coupler and (b) scanning electron 
microscopy (SEM) image showing the principal waveguide (1) and the coupling channel, or 
adjacent waveguide (2) surrounded by the random array of metallic nanoparticles (NPs). The 
interaction length is denoted here as L. The inset in (a) corresponds to an SEM amplification 
image that shows the individual NPs which constitute the array. (c) Saturated leakage radiation 
microscopy image of a plasmonic directional coupler with L = 18 μm illuminated at a 
wavelength λ0 = 780 nm. The position of the input and output ports (A and B) are indicated 
with white arrows. 

The PDCs consisted of a pair of 2-μm-wide NP-free channel waveguides enclosed by a 
relatively high-density array of gold NPs (~75 per square micron). The design height and 
width of the NPs was set to h = 70 nm, and w = 50 nm, respectively. The particles were 
randomly distributed over the designed areas on top of the gold film [Figs. 1(a) and 1(b)]. The 
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PDCs are composed of two parallel waveguides separated by a 500-nm-wide stripe filled with 
NPs. It is important to mention that the ND-filled stripe has also a random distribution and 
that it serves as the coupling mechanism for this specific device. The separation distance 
between the two plasmonic waveguides was chosen following the experimental 
characterization conducted for different widths of the NP-filled stripe [see Appendix A]. The 
best coupling occurred for a separation distance of 500 nm. The interaction length L of the 
PDCs consists of the longitudinal distance where the two waveguides are in close proximity 
to each other, and where the power transfer takes place. The fabricated structures had L varied 
from 12 to 18 μm. The excitation of SPPs was performed using single metallic (gold) ridge, 
placed at 5 μm from the PDC; where a tapered channel was added to reduce the coupling 
losses [Fig. 1(b)]. 

The characterization of the samples was performed using leakage-radiation microscopy 
(LRM) and postprocessing image analysis in the wavelength interval from 700 to 800 nm. 
The basic setup and principle of operation of the LRM setup can be found in [30]. Our light 
source consisted of a tunable continuous-wave Ti:Saphire laser (SpectraPhysics 3900S), 
where the laser beam was linearly polarized and focused onto the sample using a 20x 
objective. The leakage radiation was collected using a 63x oil-immersion objective, which has 
a numerical aperture NA = 1.25; sufficient to collect the leakage radiation of the SPP modes 
propagating at a gold-air interface. The power distribution of the SPPs was monitored using a 
charge-coupled device (CCD) camera in the image plane of the microscope, and the intensity 
profiles were extracted from the captured digital images. 

While we observed clear signs of power redistribution along the propagation, and the 
coupling region was clearly long enough to sustain power transfer oscillations, the power 
transfer was never complete [Fig. 1(c)]. Looking for the simplest approach to model this 
(unexpected) feature, we realized that one should either assume one of the two following 
possibilities: (1) that the two coupled waveguides (nominally of the same width) have very 
different propagation characteristics destroying the phase-matching of coupled SPP modes, or 
(2), considering the NP stripe as a third waveguide (with characteristics distinctly different 
from those of the channel waveguides) mediating the coupling between SPP modes supported 
by NP-free channels. The latter seems better fitting to the expectations and experimental 
observations 

3. Three-waveguide directional-coupler model 

The coupling arrangement investigated in this work was thereby considered using a three-
waveguide coupled-mode approach with the PDC fields being represented by normal modes 
of three individual waveguides that are coupled with each other [Fig. 2(a)]. The coupled 
differential equations can be expressed in a matrix form as follows: 

 

( )
( )
( )

( )
( )
( )

1 1 12 13 1

2 21 2 23 2

3 31 32 3 3

.

A z A z
d A z i A z
dz

A z A z

β κ κ
κ β κ
κ κ β

    
    = −    
        

 (1) 

The field distributions of the j-th waveguide are denoted here as Aj(z), as well as the 
corresponding wavevectors βj (j = 1, 2, 3), where z is the propagation direction. The 
interaction between the waveguides is determined by the coupling coefficients κjk (j ≠ k = 1, 
2, 3), which describe strength of the coupling from the j-th to the k-th waveguide. For most 
symmetrical systems, κjk = κkj, therefore we used such criterion for this model. Waveguides 1 
and 3 are treated as the direct and the adjacent channel waveguides, respectively, and their 
wavevectors are assumed to be equal (β1 = β3 = βc), since the geometrical parameters are, at 
some extent due to the randomness, the same. Waveguide 2 corresponds to the array of 
random NPs between the channels (β2 = βr). The degrees of freedom associated to the 
coupling coefficients was decreased by assuming that the coupling from the channel modes to 
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